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A statistical mechanical based theory is developed for incorporating the effect of the long-range forces in
Ga-Pb alloy. In particular, the simplified random-phase approximation is employed in conjunction with the
Grosdidier et al. �Phys. Rev. B 72, 024207 �2005�� model for GaGa and PbPb interactions while a suitable
nonadditive pair potential is introduced between unlike atoms. We present analytical expressions for the
equation of state and for the concentration fluctuations SCC�0�, and then the role of the nonadditivity parameter
is established by consulting the empirical critical parameters of the spinodal curve. It becomes possible to
deduce the behavior of different thermodynamic functions such as Gibbs energy of mixing, excess Gibbs
energy, isobaric heat capacity, and SCC�0� in the vicinity of the liquid-liquid critical point and under extremely
high pressure. The impact of temperature and pressure on segregation, and compound-forming tendencies is
also investigated. Moreover, the immiscibility gap of the alloy is calculated and compared with the empirical
results. The results suggest that: �i� the nonadditivity of the potential tails plays a dominant role in the
determination of the spinodal curve, �ii� SCC�0� is a very sensitive function in triggering the chemical short-
range order, and �iii� the segregation or phase separation in Ga-Pb alloy is an outcome of the temperature
dependence of the energy mismatch parameter. In conclusion, the present equation of state is sufficiently
accurate that it provides a binodal curve, an excess Gibbs energy of mixing and isobaric heat capacity in
quantitatively good agreement with the empirical results.
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I. INTRODUCTION

Liquid-liquid �L-L� phase equilibrium has become an im-
portant field of investigation in view of its extensive appli-
cations in analytical chemistry and in hydrocarbon industry.
It is also essentially important in nuclear fuel processing and
production.1 In particular, Ga-Pb alloy enjoys special signifi-
cance due to its cosmological and metallurgical relevance.2

The phase diagram of Ga-Pb system was reported first by
Puschin et al.3 and Predel.4 It shows monotectic and eutectic
transitions at 590 and 302 K, respectively. Accurate isobaric
heat-capacity measurements by Mathon et al.5 have con-
firmed the monotectic parameters, T=583.8 K and gallium
concentration CGa=0.0395. The advanced differential ther-
mal scanning calorimetry techniques enabled more precise
measurements of the excess thermodynamics properties over
the entire concentration range of the miscibility gap,5,6 and
accurate prediction of critical parameters Tc=879.8 K and
Cc

Ga=0.532. Quite recently, measurements of the electrical
resistivity of Ga-Pb alloy under high pressure were carried
out,7,8 which showed a very large miscibility gap between
5.5 and 97.6 at % gallium with critical parameters Tc
=879.15 K and Cc

Ga=0.6. These measurements could also
give evidence of the presence of rather flat L-L coexistence
curve in the wide vicinity of the critical point. One of the
reasons is that the metal-like bonds remains of the same type
in both Ga-rich and Pb-rich coexisting liquids through the
entire interval of the miscibility gap. On the other hand, the
Ga-Pb alloy exhibits peculiar interfacial characteristics. A

complete wetting transition at L-L coexistence for the alloy
Ga0.95-Pb0.05 has been observed by Turchanin et al.9 at tem-
peratures in the range of 550–740 K. Also, prewetting of
Pb-rich solid by Ga-rich liquid was reported by Cheng et
al.10 at temperatures between the eutectic and monotectic
temperatures, where the liquid miscibility gap is metastable.
The prewetting line is connected to the edge of the L-L co-
existence line at the complete wetting transition temperature.
In recent years, a growing interest in the surface freezing and
surface melting transitions emerged at the liquid-vapor �L-V�
interface in Ga-Pb mixture.11 This was recently observed by
means of x-ray measurement reflectivity12 and second-
harmonic generation �SHG� measurements.13

The theoretical basis of thermodynamic stability was first
stated by Gibbs: a homogeneous phase with energy
G�C1 ,T , P� is minimal at constant temperature T, pressure P,
and independent concentration C1. The concept of stability is
normally related to specific case of phase equilibrium in
which homogeneous and heterogeneous phases can coexist.14

In order to establish the stability condition, we consider the
Gibbs free energy of mixing, defined as

Gmix = G − �C1G1
0 + C2G2

0� � 0, �1�

where C2=1−C1 and Gi
0 refers to the Gibbs energy of pure

components �i=1 and 2�, all of which must be evaluated at
the same T and P. The constraint in Eq. �1� indicates that
mixing of fluids is only possible when Gmix is negative and
homogeneous phase is obtained at every concentration; oth-
erwise pure fluids will remain immiscible and no homoge-
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neous mixture will be possible. In the case of partial misci-
bility, Gmix function has two inflection points and the
concavity of Gmix changes with composition at constant T
and P. Hence an additional miscibility test of binary alloys is
obtained if ��2Gmix / �C1

2 �T,P,N�0. This follows from the fact
that a system will always present instability if Gmix inflects.
Applying this condition to Eq. �1� yields

� �2G

�C1
2�

T,P,N

� 0. �2�

This condition indicates that G�C1 ,T , P� exhibits a positive
concavity for the homogeneous mixture to be stable.15 An
alternative approach, originally put forward by Bhatia and
Thornton,16 and McAlister and Turner,17 and successfully
used by several authors,18–22 is that the concentration fluc-
tuations, ��C2�, is related to the concentration-concentration
partial structure factor SCC�0�= �N���C2� at the long-
wavelength limit, q→0. The Bhatia-Thornton structure fac-
tor SCC�q� has the advantage of easy identification either
from the thermodynamics route,

SCC�0� = N���2G

�C1
2 �

T,P

−1

, �3�

or from a statistical mechanical route �e.g., Bhatia23�,

SCC�q� =
C1C2

1 − C1C2��C11�q� + C22�q� − 2C12�q�� − C1C2f�q�
,

�4�

where �= �kBT�−1, kB is Boltzmann’s constant, and Cij�q� are
the familiar Orstein-Zernike direct correlation function.
Equation �3� establishes the link between the stability func-
tion and SCC�0�; therefore SCC�0� can be used to test the
stability as well as the degree of immiscibility of binary mix-
ture. Equation �3� has three important limits: �i� SCC�0�→0
at the stoichiometric composition, �ii� SCC�0�→�, where the
system approaches its critical point of demixing, TC. Singh
and Sommer24 observed that the small increment of tempera-
ture of 	10−2 K in the vicinity TC may bring an increase in
SCC�0� as large as 	102. �iii� The ideal mixture Gibbs free
energy is normally defined as

�Gid = N�C1 ln C1 + C2 ln C2� , �5�

giving, via Eq. �3�, the ideal mixing limit to the concentra-
tion fluctuations,

SCC
id �0� = C1C2, �6�

which corresponds to random distribution of two types of
atoms. The deviation from ideal mixing condition, SCC�0�
�SCC

id �0�, indicates compound-forming tendency, i.e., unlike-
atom pairs are preferred as nearest neighbors �heterocoordi-
nation�. On the other hand, SCC�0��SCC

id �0� indicates phase-
separating tendency or demixing state; in this case like-
atoms tend to pair as nearest neighbors �homocoordination�.
Introducing the excess Gibbs energy Gex=G−Gid into Eq.
�2� gives the definition of the so-called excess stability func-
tion, Eex, that was originally introduced by Darken,25

namely:

�Eex =
1

SCC�0�
−

1

C1C2
. �7�

Equation �4� is an exact relation. Three simplifying assump-
tions were imposed on Eq. �4� in order to interpret the
chemical short-range order �CSRO� in binary alloys. First,
the function f�q� is assumed extremely small, which is typi-
cally the case for substitutional alloys such as Li-Ca
alloy.26–28 Second, the direct correlation function Cij�q� are
simplified within Bhatia-Young model,29 which is known as
simplified random-phase approximation �SRPA�; in Fourier
space it reads

Cij
SRPA�q� = Cij

0 �q� − ��̃ord
t �q� . �8�

Here, Cij
0 �q� represent the reference fluid direct correlation

functions, which are normally the mixture of hard spheres,
characterized with hard-sphere diameters 	ij and �ij

t �r�,
which are the long-range contributions to the pair interac-
tions �ij�r� at r
	ij. The third assumption was the defini-
tion of the ordering potential by Copestake et al.,27

�ord�r� =
1

2
��11�r� + �22�r�� − �12�r� . �9�

Then the approximation form of Eq. �4� for nearly symmetric

mixture �	11
	22� yields the link between �̃ord�q� and
SCC�q� at q→0 limit:

���̃ord�0� =
1

2
� 1

SCC�0�
−

1

C1C2
� , �10�

with � being the number density. Equations �7� and �10�
confirm that the two routes for calculating SCC�0� are equiva-
lent. Also they emphasize the importance of SCC�0� in inves-
tigating the stability in binary mixtures with particular refer-
ence to segregation and CSRO.

Therefore, the condition of the critical point reads

SCC�0�−1 = � �2�G

�C1
2 �

C1=C1c

= � �3�G

�C1
3 �

C1=C1c

= 0, at T = TC.

�11�

In our investigation of Ga-Pb alloy, the quantity of central
importance is SCC�0�, which has strong concentration and
temperature dependence for both cases of demixing and or-
dering. It is the T dependence of SCC�0� that allows us to
calculate, with reasonable accuracy, the spinodal curve of
Ga-Pb mixture at the entire concentration range and also lo-
cate precisely its critical parameters. The T dependence of
SCC�0� comes originally from the strong T dependence of the
potential parameters of pure constituents. Nowadays, there is
increasing interest in exploring the possibility of fluid-fluid
phase separation in systems with purely repulsive forces.30

Square shoulder �SS� potential, which is a Silbert-Young
model,31 is a good candidate. Grosdidier et al.32 employed
SS model potential for calculating the structure factors Sii�q�
of pure metals Ga and Pb within the level of accuracy of
SRPA. The fitted Sii�q�, with the empirical results, provide
linear temperature dependence to the potential parameters at
a temperature range covering the entire liquid phase of pure
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Ga and Pb. In the present work, we employed Grosdidier et
al.’s version of SS potential for like-atom interactions while
for unlike-atom pairs, we used SS potential with additive
core radius and nonadditive potential strength with nonaddi-
tivity parameter �. Actually, the latter assumption was intro-
duced by our group in several papers.18–22,33,34 The advan-
tage of this approach lies in the simplicity of the expressions
obtained for the properties of interest and that, at this level of
description, the details of the potentials of different species
in the alloy are not important since only the parameters of
these potentials are important.

The layout of the paper is as follows. In Sec. II, we
present the SS model potential and the analytical expression
of the proposed equation of state �EOS� based on SRPA. In
Sec. III we pursue the thermodynamic approach to obtain an
analytical expression of SCC�0� and describe our method for
the determination of the critical parameters, as well as the
nonadditivity parameter �. Then we calculate the spinodal
curve and compare it with the existing theoretical32 and em-
pirical results.35 Also, the C, T, and P dependences of SCC�0�
are discussed for both demixing and ordering tendencies
with the help of our analytical expression. In Sec. IV we
demonstrate the procedure for locating the liquid-liquid equi-
librium �LLE� in binary mixtures and present the binodal
curve of Ga-Pb alloy. Also the quality of the present EOS is
checked by extensive comparison with the empirical results
of the binodal curve, the excess Gibbs free energy of mixing,
and the isobaric heat capacity. This is followed with conclud-
ing remarks in Sec. V.

II. PAIRWISE INTERACTIONS AND EQUATION OF
STATE OF Ga-Pb MIXTURE

A. Model potential for Ga-Pb system

The constituent elements are assumed to be interacting via
pair potentials �ij�r�, consisting of short-range repulsion,
�ij

hs�r�, usually with the hard-sphere and weak long-range tail
potentials, �ij

t �r�, namely:

�ij�r� = �ij
hs�r� + �ij

t �r� . �12�

With i,j=1 and 2 for Ga and Pb, respectively. The hard-
sphere potentials are characterized with hard-core diameters
	ij,

�ij
hs�r� = �� r � 	ij

0 r � 	ij
� ,

�ij
t �r� = 
 0 r � 	ij

�ij 	ij � r � 
ij	ij

0 r � 
ij	ij
� . �13�

The long-range contribution has been considered as the SS
potential, which is often called Silbert-Young31 potential. �ij
and 
ij represent the strength and range of the SS potential.
�ij and 
ij are assumed to be additive, that is, they obey the
well-known Lorentz-Berthelot mixing rule, i.e.,

	12 = �	11 + 	22�/2 and 
12 = �	11
11 + 	22
22�/�2	12� ,

�14�

whereas the �ij is taken to be nonadditive, in violation to the
mixing rule:

�12 = ���11�22�1/2. �15�

The parameter � is often called the nonadditivity parameter,
which represents the relative strength of the unlike potential.
Actually � was first introduced by Ichimura and Ueda36 in
their calculations of the phase diagram of square-well fluid
mixture. This parameter controls the energetic of interactions
among the constituent species. It has been reported
recently20–22 that the choice of � can account on the phase-
separation or compound-forming tendencies for systems ex-
hibiting strong chemical ordering. Quite recently, Grosdidier
et al.32 have used the SS potential for pure liquids Ga and Pb,
and determined the potential parameters 	ij, �ij, and 
ij by
consulting the observed structure factor of pure Ga, reported
by Bellissent-Funel et al.,37 and of pure Pb, reported by
Dahlborg et al.38 The fitting expressions are found to be lin-
ear functions of temperature, T, within the whole liquid
range of Ga and Pb:

	ii = 	ii
0 + 	iiT, �ii = �ii

0 + �iikBT and 
ii = 
ii
0 + 
iiT .

�16�

The fitting constants, as obtained by Grosdidier et al.,32 are
presented in Table I.

Here we are interested in the long-wavelength limit of the

Fourier transform of the tail potential, �̃ij
t �0�, namely,

�̃ij
t �0� = 4��

0

�

r2�ij
t �r�dr . �17�

For the SS potentials given by Eq. �13�, the integrals are
trivial:

�̃ij
t �0� =

4��ij	ij
3

3
�
ij

3 − 1� . �18�

Then, it is straightforward to obtain the relation of the q

→0 limit for the ordering potential, �̃ord�0�, as defined in
Eq. �10� as

TABLE I. Fitting parameters of square shoulder potential for
pure Ga and Pb.

Potential parameters Gallium Lead

	0�Å� 2.62709 3.15112

	̄�Å /K� −1.37418�10−4 −1.21235�10−4

�0 /kB�K� 70.33 172.26

�̄ 0.04667 −0.05456


0 2.94929 1.89311


̄�K−1� 2.94059�10−4 1.76116�10−4
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�̃ord�0� =
1

2
��̃11�0� + �̃22�0�� − �̃12�0� . �19�

Equations �19�, �18�, and �16� provide the T-dependent rela-
tion of the ordering potential via the potential parameters.
Osman and Singh19,20 investigated the role of the geometrical
parameters 	ij, �ij, and � on the phase stability of Lennard-
Jones fluid mixtures. They observed that �i� the size mis-
match, 	r=	22 /	11, alone is insufficient to bring segregation
in binary mixture. �ii� The energy mismatch, �r�=�22 /�11�, as
well as the nonadditivity parameter, �, clearly demonstrates
a great impact on segregation or phase-separation tendencies.
In order to investigate the role of 	r and �r, as well as the
range ratio 
r�=
22 /
11�, we plotted the temperature depen-
dence of these parameters for Ga-Pb alloy in Fig. 1 using the
set of relations in Eq. �16�. It shows clearly that both 	r and

r have a very weak temperature dependence. Accordingly
they may have no significant role on the phase separation of
Ga-Pb mixture. On the other hand, the energy ratio, �r,
shows dramatic decrease with increasing temperature, which
reflects directly on the interchange energy �12. This strong
temperature dependence of �12 may interpret why segrega-
tion is achieved at low temperature while the mixture tends
to have random mixing at T
1000 K and may show the
compound-forming tendency at lower temperatures.

All the potential parameters are impeded in the ordering

potential, �̃ord�0�, given in Eq. �19�. Figure 2 shows clearly

the temperature dependence of �̃ord�0�. For T�1040 K, it

shows �̃ord�0��0.0, which indicates that �̃12�0� is more re-

pulsive than the average of �̃11�0� and �̃22�0�. This may
interpret the origin of spinodal instability at lower tempera-

tures. Conversely, positive �̃ord�0� at higher T corresponds to
more gradual tendency toward ideal mixing.

B. Equation of state

According to Leonard-Barker-Henderson �LBH� thermo-
dynamic perturbation theory,39 all thermodynamic functions
can be expressed in terms of reference system and perturba-
tion contributions. The Helmholtz free energy per atom, F,
and the pressure, P, are

�F = �Fhs + �Ft and �P = �Phs + �Pt. �20�

Within the SRPA of Bhatia and Young,29 the first-order per-
turbation contribution to the Helmholtz free energy is ob-
tained from the long-wavelength limit of the Fourier trans-

form of the tail potential, �̃ij
t �0� namely:

�Ft =
��

2 �
i,j

CiCj�̃ij
t �0�

=
�

2kBT
�C1

2�̃11
t �0� + 2C1C2�̃12

t �0� + C2
2�̃22

t �0�� .

�21�

The tail contribution to the pressure, Pt, can be obtained
immediately through the thermodynamic relation �Pt
=�2���Ft / �� �T,C, which yields

�Pt

�
= �Ft. �22�

Returning now to the hard-sphere reference system formal-
ism of Phs and Fhs. We employ the recent modifications of
the Boublik-Mansoori-Carnahan-Starling-Leland �BMCSL�
expression for the pressure of the additive hard-sphere fluid
mixture.40,41 The modified expression is recently set by Bar-
rio and Solana �BS� �Ref. 42� to account for the fourth and
fifth virial coefficients, and satisfies the thermodynamic con-
sistency condition. With these improvements, Phs can be ex-
pressed as

�Phs = �Phs
BMCSL + �Phs

BS, �23�

with

�Phs
BMCSL

�
=

1

�1 − ��
+

3�0y1y2

�1 − ��2 +
�0

2y2
3�3 − ��

�1 − ��3 , �24�

and

�Phs
BS

�
=

�0
3Z

�1 − ��2 , �25�

where

λ

ε

σ

FIG. 1. Temperature dependence of size ratio 	r=	22 /	11, en-
ergy ratio �r=�22 /�11, and range ratio 
r=
22 /
11 of the SS-
potential parameters.

Φ
ε

σ

FIG. 2. The temperature dependence of the ordering potential,
depicted from Eqs. �19�, �18�, and �16�.
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Z = �1C1C2y1y2�y4 + �2� . �26�

The subfunctions �0= �� / 6 ��, yn=C1	11
n +C2	22

n , the pack-
ing fraction �=�0y3, �1= �	11−	22�	11	22 / 	12, and �2
=2	22

2 	12
2 . Having defined the pressure of hard-sphere mix-

ture in Eq. �23�, it is now possible to obtain the analytical
expression for the excess Helmholtz free energy from the
integral equation,

�Fhs
ex = �

0

� ��Phs

�
− 1�d�

�
. �27�

We carried out the integrations of Eqs. �24� and �25�, the
resulting expression is

�Fhs
ex = �2�0

3Z

�3 +
�0

2y2
3

�2 − 1�ln�1 − ��

+
3�0y1y2

�1 − ��
+

�0
3Z�2 − ��

�2�1 − ��
+

�0
2y2

3

��1 − ��2 . �28�

Then the Helmholtz free energy per atom of the hard-sphere
references system can finally be written in terms of the ideal-
gas contributions, Fid, and excess free energy, i.e.,

�Fhs = �Fid + �Fhs
ex, �29�

with

�Fid = �
i

Ci ln Ci −
3

2�
i

Ci ln mi + ln � −
3

2
ln� kBT

�11
�

+
3

2
ln� h2

2��11
� − 1. �30�

where mi denote the atomic masses of the constituent atoms
and h is the Planck constant. Finally, other thermodynamic
properties of interest follow from F and P. Thus the Gibbs
free energy, G, is given as

�G

N
=

�F

N
+

�P

�
. �31�

III. CONCENTRATION FLUCTUATIONS AND THE
SPINODAL CURVE

In this section we shall focus our attention on SCC�0� and
present its analytical expression following the thermody-
namic route given by Eq. �3�. We perform the second deriva-
tive of Gibbs free energy �Eq. �31�� via Eqs. �20�, �21�, and
�28�–�30�, which is quite lengthy but worth presenting in a
simplified form that we readily obtain

SCC�0�−1 = SCC
id �0�−1 + SCC

ex �0�−1 + SCC
t �0�−1. �32�

The ideal mixture contribution, SCC
id �0�, is given in Eq. �6�

while the tail contribution, SCC
t �0�, can be obtained from Eq.

�21� as

SCC
t �0�−1 =

�

kBT
��̃11

t �0� + �̃22
t �0� − 2�̃12

t �0�� =
2�

kBT
�̃ord�0� .

�33�

The second derivative of Fhs
ex �Eq. �28�� with respect to C1 is

done by tedious and simplified considerably to give SCC�0�−1

as

Scc
ex�0�−1 = h0 ln�1 − �� +

h1

�1 − ��
+

h2

�1 − ��2

+
h3

�1 − ��3 +
h4

�1 − ��4 . �34�

The values of which are

h0 =
6�0

2d2
2y2

�2 +
2�0

3�Z2 − 6d1d2y2
2�

�3

+
6�0

4�d3
2y2

3 − 2d3Z1�
�4 +

24�0
5d3

2Z

�5 ,

h1 = 6�0d1d2 +
�0

3�Z2�2 − �� − 6d2d3y2
2�

�2 ,

h2 = �0
2d3�d3 + 6ȳ� +

6�0
2d2

2y2

�

−
�0

4d3�d3y2
3��3 + 4� − 4� + 2Z1�2�2 − 9� + 6��

�3 ,

h3 = 6�0
3d3

2y1y2 +
6�0

3d2d3�3� − 1�
�2

+
2�0

5d3
2Z�4�3 + 2�2 − 11� + 6�

�4 ,

h4 =
2�0

4d3
2y2

3�6�2 − 4� + 1�
�3 .

Also,

Z1 = �1�C̄y1y2 + C1C2ȳ�y4 + �2� + C1C2y1y2d4� ,

and

Z2 = 2�1��C̄ȳ + C1C2d1d2 − y1y2��y4 + �2�

+ �C1C2ȳ + C̄y1y2�d4� ,

with di=	11
i −	22

i , ȳ=y1d2−y2d1, and C̄=C2−C1.
Equation �32� together with Eqs. �6�, �33�, and �34� form

the required analytical expression for SCC�0� related to the
present EOS. One of the prime objectives in expressing
SCC�0� in the present formula is that it can be used to inves-
tigate the role of temperature and pressure on the demixing
properties of Ga-Pb mixture more accurately, and with less
computational effort than carrying out the second numerical
derivatives of Eq. �31�.

In real system SCC�0� can lie anywhere between 0.0 to �,
depending upon the physicochemical conditions of the mix-
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ture. The condition SCC�0�−1→0 determines the spinodal
curve of the mixture. It is well known that the binodal and
the spinodal curves for any fluid mixture coincide at the
critical region. Therefore we use empirical binodal curve
critical parameters available for Ga-Pb mixture,35 Tc
=879.15 K and Cc

Ga=0.56 then monitor the minimum of
SCC�0�−1 versus pressure for several values of the nonaddi-
tivity parameters �. The critical pressure is achieved when
SCC�0�−1 shows effectively its minimum with zero value in
accordance with the critical condition specified in Eq. �11�. It
has been found that a unique pair �� , Pc� gives a precise zero
for the minimum of SCC�0�−1. Figure 3 illustrates the influ-
ence of � on the minimum position. We found that the value
of the empirical critical concentration, C1c, must slightly be
altered by 0.003 to satisfy exactly the necessary critical con-
ditions, �SCC�0�−1�min=0, which uniquely determines the
critical pressure Pc=27.6644 kbars, critical concentration
Cc

Ga=0.557, and �=1.5503. Grosdidier et al.32 performed
similar calculations for the same pair potential, as in Eq.
�13�, with exactly the same temperature dependent param-
eters 	ij, �ii, and 
ij, provided in Table I. These authors ob-
tained �=1.4886 and C1c=0.6231 for the same value of Tc
=879.15 K. The discrepancies between the two results of �
and C1c came originally from the different routes of describ-
ing the critical demixing condition. Grosdidier et al.32 em-
ployed the stability matrix approach, which is based on the
partial structure factors Sij�q� calculated within SRPA. In this
approach, the mixture density as a function of temperature,
��T�, is an input quantity, which was basically composed
from the empirical densities of the pure metals, �Ga�T� and
�Pb�T�, which were taken from Crawley43 fitting formula.
Their approach does not guarantee the fixed pressure condi-
tion, which is an essential condition for calculating SCC�0�

and consequently for the spinodal curve calculations. In the
present approach we used the thermodynamic route to the
EOS that facilitates the determination of ��C1 ,T� self con-
sistently at fixed pressure, P, from Eqs. �20�, �22�, and �23�.

By determining the nonadditivity parameter �, and the
critical parameters C1c and Pc, it becomes possible now to
calculate the spinodal curve with high precision by fixing, P,
and searching for gallium concentrations C1� and C1�, which
anole SCC�0�−1 for each temperature. Each pair �C1�, C1�� with
C1��C1c�C1� specifies the miscibility gap at a given tem-
perature. The whole picture of the spinodal curve in the tem-
perature range 300 K�T�Tc is presented in Fig. 4 together
with Grosdidier et al.’s32 spinodal and the empirical binodal
curves �Ref. 35�. Grosdidier et al.’s spinodal shows an over-
estimation of the critical concentration by 11.3% while our
critical composition is 0.5% lower than the experimental
value. For all T�Tc the binodal curve is wider than the
spinodal. This is due to the thermodynamic condition im-
posed in each curve as the former gives the boundary of
phase equilibrium while the latter shows the boundary of
phase stability.

According to Eqs. �7� and �10�, we suggest using the ex-
cess concentration fluctuations SCC

� �0�=SCC�0� /SCC
id �0�,

which measures the deviation from ideal mixing condition.
Demixing is signaled by a strong enhancement of SCC

� �0�
from 1.0. This is of great significance for visualizing the
degree of CSRO in the mixture. If, at a given composition,
SCC

� �0��1.0, then there is a tendency for segregation or
phase separation.44 On the other hand, SCC

� �0��1.0 is an
indication of strong association, or the existence of chemical
complex or what is known as a compound formation. In what
follows we discuss the behavior of SCC

� �0� in the vicinity of
the critical point. In Fig. 5, we present SCC

� �0� versus gallium
concentration at the critical pressure Pc=27.6644 kbars for
several isotherms. For T�Tc, SCC

� �0� exhibits phase separa-
tion and for T�Tc the system inhibits concentration fluctua-
tions going toward ideal mixing. The asymmetry in SCC

� �0� is
independent of the temperature and is always at C1
0.56 in
Ga-rich side, which is exactly the same as C1c.

One of the basic advantages of the present approach is
that it allows us to study the effect of temperature and pres-

FIG. 3. Impact of the pressure and the nonadditivity parameter
on the stability function, SCC�0�−1, at critical gallium concentration
of C1c

Ga=0.557 and critical temperature of Tc=879.15 K �Ref. 35�.

FIG. 4. Comparison of the calculated spinodal curves, the
present work �full line� with theoretical calculations �Ref. 32�
�dashed line�, and the empirical binodal curve �Ref. 35� �circles�.
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sure on segregation and compound-formation tendencies of
Ga-Pb alloy through SCC

� �0�, which is more sensitive to T and
P than the excess thermodynamic functions. We plotted
SCC

� �0� for Ga0.56-Pb0.44 mixture in Figs. 6 and 7, respec-
tively. It is obvious from Fig. 6 that the more the pressure
lowers, the more the segregation tendency enhances. The
maximum SCC

� �0� is almost at Pc for all isotherms. The cross-
over to compound-forming region �SCC

� �0��1.0� occurs
roughly at 80 kbars. It seems that the short-range order pre-
vails to the same effect in both the segregation and
compound-forming regions in the vicinity of the crossover
pressure. Figure 7 provides further illustration of the impact
of temperature on SCC

� �0� at low-pressure range �P� Pc�
�Fig. 7�a�� and at higher pressures �P� Pc� �Fig. 7�b��.
SCC

� �0� shows segregation tendency at all temperatures in
Fig. 7�a� while the gradient ��SCC

� �0� / �T �P is always nega-
tive and decreases with decreasing pressure. Eventually, the
mixture reaches its ideal mixing state at extremely high tem-
peratures. This is the characteristic feature of most phase-
separating liquid mixtures for which the energy mismatch �r
and the nonadditivity parameter � are playing a dominant
role.19 The most interesting behavior of SCC

� �0� can be seen

in Fig. 7�b�: At intermediate pressures �Pc� P�75 kbars�,
SCC

� �0� shows a crossover from segregation to compound-
formation regions. The crossover temperature decreases by
increasing pressure. Also it is interesting to observe the de-
crease in short-range order by increasing pressure. This be-
havior can be attributed to the reduction in the enthalpic
effect on demixing due to the sharp decrease in energy ratio
�r with increasing T, as observed in Fig. 1, which in turn

reflects on switching of the ordering potential �̃ord�0� from
negative to positive, as shown in Fig. 2. It is obvious from
the approximate relation �Eq. �10�� and our complete formula

�Eqs. �32� and �33�� that �̃ord�0� and SCC
� �0� are linked, and

the sign change of �̃ord�0� is responsible on the crossover of

SCC
� �0�. The fact that Eq. �19�, for �̃ord�0�, has no concentra-

tion dependence and shows single zero at 1040 K forces
SCC�0� to have a sign crossover that could be independent of
the pressure value, which is not the case in Fig. 7�b�. This is
a strong indication that the approximation, f�q�=0, in Eq. �4�
may not be totally valid for Ga-Pb alloy, otherwise �̃ord�0�
should have a concentration dependence. We recall that such
a crossover of SCC

� �0� was observed in several real systems,
for example, Bi-Zn, Li-Sn, and Li-Pb.24 �ii� At considerably
higher pressures �P�75 kbars�, SCC

� �0� indicates
compound-forming tendency for the whole temperature
range and gradient ��SCC

� �0� / �T �P changes sign. Also, the
asymmetry of SCC

� �0� changes its position. This behavior can
be interpreted as an outcome of the enhancement of the en-
tropic effects of the hard-sphere reference system more than
the energetic effects due to the tail interactions. The charac-
teristic features of SCC

� �0�, presented in Figs. 5–7, can be
utilized to understand the nature of bonding in Ga-Pb mix-
ture within the vicinity of its critical end point. SCC

� �0�
�1.0 indicates self coordination and like atoms are in pairs
as nearest neighbors, which signifies homocoordination. This
segregation effect is enhanced dramatically by lowering ei-
ther the temperature or the pressure below the critical value.
On the other hand SCC

� �0��1.0 indicates heterocoordination,
namely unlike atoms prefer to be in pairs at nearest neigh-

α

FIG. 6. The impact of pressure on SCC
� �0� for Ga0.557-Pb0.443

alloy at several isotherms.

αα

FIG. 7. Concentration fluctuations SCC
� �0� versus temperature

for Ga0.557-Pb0.443 alloy at �a� low pressures, P� Pc

�=27.6644 kbars�, and �b� high pressures, P
 Pc.

α

FIG. 5. Effect of temperature on the concentration fluctuation in
the long-wavelength limit �SCC

� �0�=SCC�0� /SCC
id �0�� for Ga-Pb mix-

ture as a function of gallium concentration at fixed pressure Pc

=27.6644 kbars.
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bors. This effect is enhanced only by increasing pressure.

IV. THERMODYNAMIC PROPERTIES OF Ga-Pb
ALLOY

Having defined the various contributions to the Gibbs free
energy, G, in Sec. II, one can readily obtain an expression for
the free energy of mixing, Gmix, as defined in Eq. �1�. For
calculating Gmix via Eqs. �1� and �31�, one has to be careful
as Gi

0=G�Cj→0� are the Gibbs free energies per atom for
the two pure species Ga and Pb at the same pressure and
temperature, as for the mixture. The general trend of the
effect of temperature on Gmix is displayed in Fig. 8. The
isotherm T=1100 K illustrates a case of complete miscibil-
ity for every composition. A negative value of Gmix is
achieved, indicating that the mixture is in homogeneous
phase. On the other hand, the curve for T=450 K represents
a case of complete immiscibility, which, at every composi-
tion, yields a positive value of Gmix, indicating that the mix-
ing process is impossible because it violates the stability con-
straint, Gmix�0. In this particular case the two phases are
present with each corresponding to a pure component. The
isotherms 600 K�T�950 K represent a case of partial
miscibility while the Gmix function reveals two minima and
concavity construction, which changes with temperature. The
common tangent criteria can be applied for the two minima
to give the compositions of the two liquid phases at equilib-
rium a particular T and P pair. The common tangent rule is
often called the thermodynamic condition for phase coexist-
ence, which provides the whole picture of the phase diagram.
For more detail, we refer the reader to Ref. 14. The particular
isotherm T=879.15 K shows a very shallow dip in Gmix,
indicating that the two minima are conserving to one global
minimum, which corresponds to the critical isotherm for
which the critical composition can also be determined, as
illustrated in Sec. III.

The double-minimum construction appearing in Fig. 8
suggests the possibility of calculating the liquid-liquid coex-
istence curve, which is normally called the LLE or the bin-
odal curve. The main idea is to search for a common tangent
for the two minima of each isothermal-isobaric Gmix versus
C1 curve. Such numerical procedure allows projecting the
equilibrium compositions C1

I and C1
II of the two coexisting

liquid phases I and II, respectively, in a T−C1 diagram. Al-
though, this procedure is not very accurate, it allows an easy
visualization of the equilibrium behavior and its relation with
the global stability of the alloy. In addition, it may be used
for initializing rigorous calculations that usually are nonlin-
ear. The alternative procedure may give place to the condi-
tion of equal chemical potential of each component of the
alloy in phase I and in phase II, which are in equilibrium at
the same pressure and temperature. This condition may be
expressed as

�i
I�C1

I ,T,P� = �i
II�C1

II,T,P� . �35�

The analytical expressions of the chemical potentials �1 and
�2 can be found from the Gibbs free energy �Eq. �31�� ac-
cording to the standard thermodynamic relations,

�1�C1,T,�� = G + C2� �G

�C1
�

T,P
, �36�

and

�2�C1,T,�� = G − C1� �G

�C1
�

T,P
. �37�

The derivative ��G / �C1 �T,P is also available in analytical
form as it appears as part of the analytical expression of
SCC�0�−1. With the help of the pressure equation �Eq. �20��,
�i�C1 ,T ,�� can be transformed to �i�C1 ,T , P�. Finally, for
each pair of P and T, the two nonlinear equations of
�1�C1 ,T , P� and �2�C1 ,T , P� have to be solved iteratively to
give three values of concentration �C1� ,C1� ,C1�� for fixed �1,
and another three values �C1

; ,C1
;; ,C1

;;;� for fixed �2. Normally,
the middle values �C1� ,C1

;;� are discarded as they refer to the
unstable thermodynamic state. There exist the uniquely de-
termined pair �C1�=C1

; � and �C1�=C1
;;;� that satisfy the equi-

librium condition �Eq. �35��, which also locate the equilib-
rium concentrations of the coexisting liquid phases, C1

I and
C1

II, respectively. Repeating the procedure for various tem-
peratures, we obtain the whole picture of the binodal curve at
P= Pc, which, typically, corresponds to the set of curves in
Fig. 8. We present our calculated binodal curve compared to
the empirical results in Fig. 9. The agreement is excellent
except in the vicinity of the critical point, which is due to the
failure of the chemical-potential functions of showing inflec-
tion point at this temperature range. In general, this is an
inherited problem for all equations of state that are based on
the mean-field approximation. This also explains the reason
why we used the spinodal curve to fit the critical point in-
stead of using the binodal curve. For more details on the
phase diagram calculations, we refer the reader to Refs. 18
and 36.

Now we turn back to fundamental function, the free en-
ergy of mixing, Gmix, given in Eq. �1�, which is correlated

0.0 0.2 0.4 0.6 0.8 1.0
-3.2

-2.8

-2.4

-2.0

-1.6

-1.2

-0.8

-0.4

0.0

0.4

0.8

1.2

1.6

2.0

2.4

T
=

45
0

K

α = 1.5503
P = PC

T = 1100 K

T = 950 K

T = 879.15 K

T = 750 K

T
=

60
0

K

G
m

ix
(k

J
m

ol
-1
)

Gallium concentration c1

FIG. 8. Gibbs free energy of mixing, Gmix, as a function of Ga
concentration for different isotherms.
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with the excess free energy of mixing GXS via the standard
definition

GXS = Gmix − kBT�C1 ln C1 + C2 ln C2� . �38�

The condition for ideal mixture can also be deducted from
Eqs. �1�, �5�, and �38�, GXS

id =0. Hence, for ordering phase
�preference of unlike atoms �GaPb� bonding as neighbors�,
GXS�0. On the other hand, GXS�0 indicates segregation
�preference for like atoms �GaGa or PbPb� bonding as neigh-
bors�. To check whether we may have some degree of con-
fidence on the accuracy of the present EOS, we consider GXS
and the isobaric specific-heat capacity, Cp. The comparison
of GXS with the experimental results of Ansara and Ajersch6

is presented in Fig. 10. A very good agreement is observed in
the vicinity of Tc for T=900 K and 800 K while the agree-
ment is less for more deviation from Tc.

The isobaric heat capacity, Cp, can be calculated via a
numerical derivative of Eq. �31�,

CP = − T� �2G

�T2 �
C,P

= − T� �2

�T2 �Fid + Fhs
ex + Ft��

C,P

+ TP� 1

�2� �2�

�T2�
C,P

−
2

�3� ��

�T
�

C,P

2 � . �39�

We may recall that the variation of F and P are functions of
	ij, �ij, and 
ij, which in our scheme are T dependent, and
hence contribute to entropy and heat capacity. The numerical
derivative of various F contributions in Eqs. �21� and �28�–
�30� can be obtained. ��� / �T �C,P and ��2� / �T2 �C,P can be
obtained via Eq. �17� at fixed P and C1. The comparison of
our prediction of CP with experimental results is shown in
Fig. 11. An excellent agreement between calculated values of
isobaric heat capacity and experimental data is observed for
a wider temperature range.

V. CONCLUSIONS AND PERSPECTIVES

An improved version of the EOS of liquid mixtures has
been developed to study the thermodynamic stability of

Ga-Pb liquid mixture. The EOS is formatted on the basis of
statistical mechanical perturbation theory, in particular, the
SRPA in which the correlation, gij�r�, due to long-range
forces among the mixture species, have set equal unity while
the main contributions from the long-range forces are taken
through the SS potentials, which act as perturbation to the
reference system. An analytical expression for the EOS of
Ga-Pb system was presented. This, in turn, is used to obtain
the analytical expressions for all thermodynamic functions of
interest, as well as SCC�0�. Moreover, the EOS has been

FIG. 9. Comparison of the calculated binodal curves using the
present EOS �full line� with the empirical binodal curve �Ref. 35�
�solid squares�.

s

FIG. 10. Comparison between the calculated excess Gibbs free
energy of mixing �Eq. �38�� �solid line� and the experimental data
�dashed line� �Ref. 6� at four isotherms.

FIG. 11. Calculated molar heat capacity at constant pressure
�Eq. �39�� �solid line� compared to the empirical values �Ref. 5�
�solid circles� at different isotherms.
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solved numerically at a given T and P to give the mixture
density as a function of concentration, which guarantee the
internal consistency of various variables. This enabled us to
examine the role of temperature on various thermodynamic
functions at low and high pressures regions, and also the
impact of pressure at different isotherms.

The main results of the present work are as follows. From
theoretical point of view, the most important conclusion is
that an analytical expression of SCC�0� is obtained. Our for-
malism enables us to study the impact of different quantities,
such as energy mismatch and ordering potential, on demix-
ing and on short-range ordering in Ga-Pb mixture. The point
of interest revealed in the present work is that the nonaddi-
tive energy parameter, �, was found to be a crucial trigger
for the critical point and it plays an important role in precise
determination of the spinodal curve of the alloy. In general,
however, quite falling in the line, the observations of Gros-
didier et al.32 regarding the spinodal instability is interesting.
These authors concluded that the origin of instability is
mainly due to the depletion of the interaction between unlike
atoms. We have performed an accurate estimation of the
critical parameters for Ga-Pb mixture Tc=879.15 K, Pc
=27.6644 kbars, and Cc

Ga=0.557, which correspond to a
unique value of �=1.5503. These calculations are based on
the numerical search for global zero minimum of the stability
function SCC�0�−1. Our results of SCC

� �0� clearly illustrate
how the interplay of temperature and pressure affects the

segregation and the compound-formation tendencies in

Ga-Pb mixture. Although the results of �̃ord�0�, Gmix, GXS,
and SCC

� �0� are consistent, SCC
� �0� is the most sensitive and

useful function used to study the demixing or short-range
order in the mixture. The obvious conclusion is that the
purely repulsive potentials such as the SS model potential
mixed with nonadditivity parameter, ��1.0, is capable of
reproducing liquid-liquid phase equilibrium. We also found
that the present EOS is accurate enough to predict binodal
curve, GXS, and Cp in excellent agreement with empirical
results over an extended region of temperature �600–1000
K�. The agreement gives us confidence in our approach, and
suggests that the present EOS can be used to calculate other
transport and surface properties of Ga-Pb alloy. Work along
this line is currently in progress.45
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